

#### Instructions to candidates

- Write your name in the box above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your name on each answer sheet and attach them to this examination paper.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- A clean copy of the **Mathematics: analysis and approaches formula booklet** is required for this paper.
- The maximum mark for this examination paper is [80 marks].

worked solutions: 14 pages

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, for example if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

## Section A (36 marks)

Answer **all** questions in the boxes provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 6]

An amount of \$1000 is invested into a bank account at an interest rate of 1.5%, compounded annually.

(a) Calculate the amount of money in the account after four years.

- [3]
- (b) Determine the number of years, *n*, after which the account first exceeds \$1300, where *n* is an integer.

(a) 
$$FV = PV \times \left(1 + \frac{r}{100k}\right)^{kn} \implies FV = 1000 \times \left(1 + \frac{1.5}{100}\right)^4 = 1061.36...$$

Thus, after four years there will be approximately \$1061.36 in the account

(b) 
$$1300 = 1000 \times \left(1 + \frac{1.5}{100}\right)^n \implies n = 17.621...$$

Thus, the account first exceeds \$1300 after 18 years

### OR ... can use a Finance Solver on a GDC

correct values for *n*, *I*, *PV* and *FV* must be indicated where appropriate

| a) | Finance                           | e Solver                |             |   | Finance                           | Solver                                                            |                  |
|----|-----------------------------------|-------------------------|-------------|---|-----------------------------------|-------------------------------------------------------------------|------------------|
|    | N:                                | 4                       | •           |   | N:                                | 4                                                                 | •                |
|    | I(%):                             | 1.5                     | •           |   | I(%):                             | 1.5                                                               | •                |
|    | PV:                               | -1000                   | •           |   | PV:                               | -1000                                                             | •                |
|    | Pmt:                              | 0.                      | •           |   | Pmt:                              | 0.                                                                | •                |
|    | FV:                               |                         | •           |   | FV:                               | 1061.363550625                                                    | •                |
|    | PpY:                              | 1                       | -           |   | PpY:                              | 1                                                                 | ▲<br>▼           |
|    |                                   | Press ENTER to calculat | te          |   |                                   |                                                                   |                  |
|    |                                   |                         |             |   |                                   |                                                                   |                  |
|    |                                   | Future ∨alue, F∨        |             |   |                                   |                                                                   |                  |
|    |                                   | Future ∨alue, F∨        |             |   |                                   |                                                                   |                  |
| b) | Finance                           | Future Value, FV        |             |   | Finance                           | Solver                                                            |                  |
| b) | Finance<br>N:                     |                         | •           |   |                                   | Solver<br>17.621807577947                                         | •                |
| b) |                                   |                         | <b>)</b>    | _ | N:                                |                                                                   | •                |
| b) | N:                                | e Solver                |             |   | N:<br>I(%):                       | 17.621807577947                                                   |                  |
| b) | N:<br>I(%):                       | e Solver                | •           |   | N:<br>I(%):                       | 17.621807577947<br>1.5<br>-1000                                   | •                |
| b) | N:<br>I(%):<br>PV:                | Solver                  | •           |   | N:<br>I(%):<br>PV:<br>Pmt:        | 17.621807577947<br>1.5<br>-1000                                   | •                |
| b) | N:<br>I(%):<br>PV:<br>Pmt:        | Solver                  | )<br>)<br>) |   | N:<br>I(%):<br>PV:<br>Pmt:        | 17.621807577947       1.5       -1000       0.                    | <br> <br> <br>   |
| b) | N:<br>I(%):<br>PV:<br>Pmt:<br>FV: | Solver                  |             |   | N:<br>I(%):<br>PV:<br>Pmt:<br>FV: | 17.621807577947         1.5         -1000         0.         1300 | ><br>><br>><br>> |

[3]

### **2.** [Maximum mark: 6]

A study is conducted to compare the monthly e-commerce sales of nine separate online stores to their monthly online advertising costs. The table below shows the monthly e-commerce sales (y) in 1000\$ of each online store and their monthly online advertising costs (x) in 1000\$.

The relationship between the monthly e-commerce sales and the monthly online advertising costs can be modelled by the regression line with equation y = ax + b.

| Online<br>Advertising<br>Costs (x) | 1.4 | 1.7 | 2.3 | 1.1 | 4.7 | 2.2 | 2.9 | 3.8 | 1.9 |
|------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| E-Commerce<br>Sales (y)            | 343 | 371 | 587 | 320 | 921 | 492 | 646 | 835 | 413 |

- (a) (i) Find Pearson's product moment correlation coefficient, *r*.
  - (ii) Write down the value of a and the value of b.

One of these nine online stores decides to increase their budget for monthly online advertising costs by \$500.

(b) Based on the given data, determine how the store's monthly e-commerce sales could be expected to alter. [2]

An online store separate from the study has monthly online advertising costs of \$7000.

 (c) Comment on the appropriateness of using your regression line to predict the monthly e-commerce sales of this separate online store. [1]

### (This question continues on the following page)

#### (Question 2 continued)

- (a) (i) performing linear regression on GDC:  $r \approx 0.985$ 
  - (ii)  $a \approx 183, b \approx 99.6$
- (b) finding the difference in y for x and x + 0.5:

$$\Delta y = (183.26...)(x+0.5)+99.577...-[(183.26...)x+99.577...]$$

 $\Delta y = 0.5 \cdot (183.26...)$ 

 $\Delta y = 91.631...$ 

Thus, the online store can expect an increase in monthly e-commerce sales by \$91,600

(c) This is extrapolation which is not appropriate.

## 3. [Maximum mark: 6]

Triangle FGH has FG = 8 cm, GH = 9 cm and area 24  $\text{cm}^2$ .

- (a) Find  $\sin \hat{G}$ . [2]
- (b) Hence, find the two possible values of FH, giving your answers correct to two decimal places.

[4]

(a) 
$$area = \frac{1}{2} \cdot FG \cdot GH \cdot \sin G$$
  
 $24 = \frac{1}{2} \cdot 8 \cdot 9 \sin G$   
 $\sin G = \frac{24}{36} = \frac{2}{3}$   
(b)  $\sin^2 G + \cos^2 G = 1$   
 $\cos^2 G = 1 - \frac{4}{9} = \frac{5}{9}$   
 $\cos G = \sqrt{5}$  or  $\cos G = -\sqrt{5}$   
 $G = \cos^{-1}(\frac{45}{3}) \approx 41.802^{\circ}$  or  $G = \cos^{-1}(-\sqrt{5}) \approx 138.19^{\circ}$   
 $FH^2 = FG^2 + GH^2 - 2(FG)(GH) \cos G$   
 $FH = \sqrt{8^2 + 9^2 - 2(8)(9)} \cos(41.807.5)$   
 $FH \approx 6.14 \text{ cm}$   
 $or FH = \sqrt{8^2 + 9^2 - 2(8)(9)} \cos(138.19.5)$   
 $FH \approx 15.9 \text{ cm}$ 

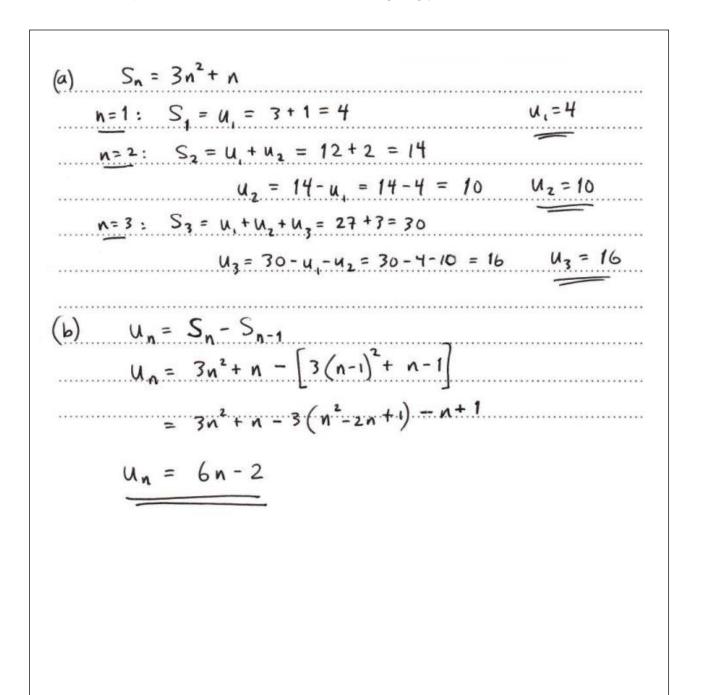
[3]

#### 4. [Maximum mark: 6]

The sum of the first *n* terms of a series is given by

$$S_n = 3n^2 + n, n \in \mathbb{Z}^n$$

- (a) Find the first three terms of the series.
- (b) Find an expression for the  $n^{\text{th}}$  term of the series, giving your answer in terms of *n*. [3]



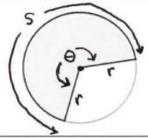
#### 5. [Maximum mark: 6]

Find 
$$\int x(x^2+1)^3 dx$$
.

*u*-substitution let  $u = x^2 + 1$ , then  $du = 2xdx \implies \frac{1}{2}du = xdx$ substituting:  $\int x(x^2 + 1)^3 dx = \int u^3 \left(\frac{1}{2}du\right) = \frac{1}{2}\int u^3 du$   $= \frac{1}{2}\left(\frac{1}{4}u^4\right) + C = \frac{1}{8}u^4 + C$  $= \frac{1}{8}(x^2 + 1)^4 + C$ 

#### 6. [Maximum mark: 6]

In the figure below, the shaded sector has a perimeter that is equal to the circumference of the circle. The location of a point inside the circle is chosen at random. Find the probability that the randomly chosen point is located inside the shaded sector.



probability point in shaded sector = area shaded sector area of circle let O = angle of shaded sector, r = radius of circle and S = length of arc of shaded sector perimeter shaded sector = 2r + 5  $= 2r + \Theta r$ solve for  $\theta$ :  $\theta = 2\pi - 2$ area of shaded sector =  $\frac{1}{\pi r^2} \frac{\theta r^2}{\theta}$  =  $\frac{\theta}{2\pi}$ substituting =  $\frac{2\pi-2}{2\pi}$ probability =  $\frac{\pi - 1}{\pi}$ 

[4]

Do **not** write solutions on this page.

### Section B (44 marks)

Answer **all** the questions on the answer sheets provided. Please start each question on a new page.

7. [Maximum mark: 13]

Consider the function *g* defined as  $g(x) = \frac{x}{3-x}, x \neq 3$ .

- (a) (i) Show that the inverse of g is  $g^{-1}(x) = \frac{3x}{x+1}$ .
  - (ii) State the domain and range of  $g^{-1}$ .
- (b) (i) Sketch the graph of  $g^{-1}$  for  $-5 \le x \le 5$  and  $-4 \le y \le 8$ , including all asymptotes.
  - (ii) Write down the equations of the asymptotes.
  - (iii) Write down the *x*-intercept of the graph of  $g^{-1}$ . [7]
- (c) Find the area of the region enclosed by the graph of  $g^{-1}$ , the *x*-axis and the line x = 4. [2]

[3]

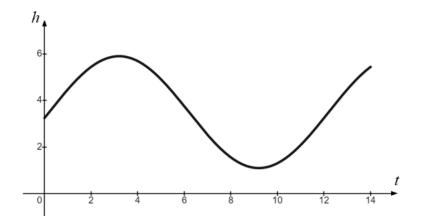
[4]

Do **not** write solutions on this page.

8. [Maximum mark: 16]

The height, in metres, of the tide in a bay is modelled by the function  $h(t) = a\cos(b(t-c)) + d$ , where *t* is the number of hours after midnight, and *a*, *b*, *c* and *d* are positive constants.

The graph below shows the height of the water for  $0 \le t \le 14$ .



The first high tide (maximum height) occurs at 03:12 and the next high tide occurs 12 hours later. The height of the tide ranges from a low tide (minimum) of 1.1 metres and a high tide (maximum) of 5.9 metres.

- (a) Show that  $b = \frac{\pi}{6}$ . [1]
- (b) Find the value of *a* and the value of *d*. [4]
- (c) Find the smallest value of c, where c > 0.
- (d) Find the height of the water at:
  - (i) 00:00;
  - (ii) 08:00.
- (e) During the time  $0 \le t \le 14$ , determine the number of hours for which the tide is lower than 3 metres. [4]

[7]

Do **not** write solutions on this page.

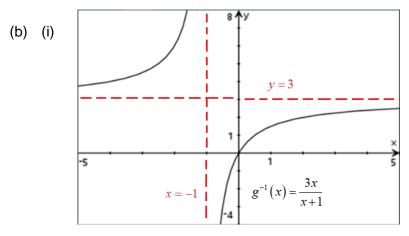
9. [Maximum mark: 15]

It has been determined that the volume of fluid in a bottle of olive oil filled by a robotic dispenser in a factory is normally distributed with a mean of 748 ml and a standard deviation of 2.4 ml.

- (a)Find the probability that a randomly selected bottle of olive oil from the factory<br/>contains more than 750 ml.[2](b)The amount of olive oil is measured for each bottle in a random sample of 12 bottles.<br/>Find the probability that exactly 4 of them contain more than 750 ml.[3](c)Find the minimum number of bottles that would need to be sampled so that the<br/>probability of getting at least one bottle containing more than 750 ml of olive oil is<br/>greater than 0.98.[3]The same factory produces packages of olives, such that the weight, A grams, of olives in<br/>a package is normally distributed with mean  $\mu$  grams and standard deviation  $\sigma$  grams.
- (d) Given that P(A < 850) = 0.09 and P(A < 900) = 0.97, find the value of  $\mu$  and the value of  $\sigma$ .

# Worked solutions for questions 7, 8 & 9

- 7. (a) (i)  $y = \frac{x}{3-x}$  switch domain(x) and range(y):  $x = \frac{y}{3-y}$ Solve for y:  $x(3-y) = y \implies 3x = xy + y \implies y(x+1) = 3x$ Thus,  $g^{-1}(x) = \frac{3x}{x+1}$  Q.E.D.
  - (ii)  $g^{-1}$ : domain is  $x \in \mathbb{R}, x \neq -1$ ; range is  $y \in \mathbb{R}, y \neq 3$



- (ii) vertical asymptote: x = -1; horizontal asymptote: y = 3
- (iii) *x*-intercept is (0,0)
- (c) area  $= \int_0^4 \frac{3x}{x+1} dx \approx 7.171686...$

Thus, the area of the region is approximately 7.17 square units

8. (a) For the period of the trigonometric function to be 12 hours,  $b = \frac{2\pi}{12} \implies b = \frac{\pi}{6}$  Q.E.D. (b)  $a = \frac{\max - \min}{2} = \frac{5.9 - 1.1}{2} = 2.4$   $d = \frac{\max + \min}{2} = \frac{5.9 + 1.1}{2} = 3.5$ 

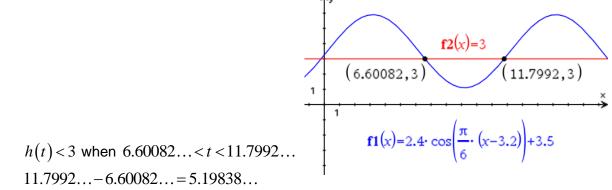
(c) At 03:12, i.e. at time t = 3.2, the height of the tide is 5.9 metres Substituting into h(t):  $5.9 = 2.4 \cos\left(\frac{\pi}{6}(3.2-c)\right) + 3.5 \implies c = 3.2$ 

(d) (i) Substitute 
$$t = 0$$
 into  $h(t)$ :  
 $h(0) = 2.4 \cos\left(\frac{\pi}{6}(0-3.2)\right) + 3.5 = 3.2491... \Rightarrow h(0) \approx 3.25$  metres  
(ii) Substitute  $t = 8$  into  $h(t)$ :  
 $h(8) = 2.4 \cos\left(\frac{\pi}{6}(8-3.2)\right) + 3.5 = 1.5583... h(8) \approx 1.56$  metres

[ Q8 worked solution continued on next page ]

#### 8. (continued)

(e) Graph 
$$y = 2.4 \cos\left(\frac{\pi}{6}(x-3.2)\right) + 3.5$$
 and find intersection points with the line  $y = 3$ 



Therefore, during  $0 \le t \le 14$ , the tide is lower than 3 metres for approximately 5.20 hours

9. 
$$X \sim N(748, 2.4^{2})$$
  $\mu = 748, \sigma = 2.4$   
(a)  $P(X > 750) \approx 0.202328...  $P(X > 750) \approx 0.202$  Q.F.P.  
(b)  $Y \sim B(12, 0.202...)$   $n = 12, p = 0.202...$   
 $P(Y = 4) = \binom{12}{4}(0.202...)^{4}(1 - 0.202...)^{8} \approx 0.135964...$   
(c) set up a table showing cumulative binomial probabilities  
starting at  $x = 1$  and going to a large value, e.g  $x = 1000$   
 $P(Y \ge 1) = \sum_{K=1}^{1000} \binom{N}{K}(0.202...)^{K}(1 - 0.202...)^{N-K}$   
on GDC:  $Y = \sum_{K=1}^{1000} \binom{X}{K}(0.202...)^{K}(1 - 0.202...)^{N-K}$   
 $r = 16, Y \approx 0.9721735...$   
 $x = 17, Y \approx 0.978571...$   
 $x = 18, Y \approx 0.982906...$   
therefore, miximum # of bottles is 18, i.e.  $n = 18$$ 

[ Q9 worked solution continued on next page ]

## 9. (continued)

(d) Find *Z* values for corresponding probabilities using GDC:

$$P(A < 850) = 0.09 \implies Z = -1.3407...$$

$$P(A < 900) = 0.97 \implies Z = 1.8807...$$

Using the formula for standardized normal variable  $Z = \frac{x - \mu}{\sigma}$ :

$$-1.3407... = \frac{850 - \mu}{\sigma} \implies \mu - (1.3407...)\sigma = 850$$

$$1.8807... = \frac{900 - \mu}{\sigma} \implies \mu + (1.8807...)\sigma = 900$$

Solving system of linear equations :

$$\mu \approx 871$$
g,  $\sigma \approx 15.5$ g